Deoxygenation of Nitro and Nitrosoaromatics by Photolysis with *t*-BuHgI/KI. Regiochemistry of *tert*-Butyl Radical Addition to Nitrosoaromatics [1]

Glen A. Russell* and Ching-Fa Yao

Contribution from the Department of Chemistry, Iowa State University, Ames, IA 50011

Received 11 January 1993

ABSTRACT

Photolysis of nitroaromatics in the presence of t-BuHgI/KI in Me₂SO or DMF leads to products formed by t-Bu• addition to the nitroso compounds. Similar products are formed in the dark in the presence of $K_2S_2O_8$. Nitroso or nitrobenzene is converted into N,Odi-tert-butylphenylhydroxylamine by a process involving N-tert-butylphenylhydroxylamine as an intermediate. In the presence of PTSA and KI, N-tert-butylphenylhydroxylamine predominates in Me₂SO, but in DMF, the phenylhydroxylamine is reduced to Ntert-butylaniline. In a similar fashion, o-nitrosotoluene is converted into $o-MeC_6H_4N(Bu-t)OBu-t$, o-MeC₆H₄N(Bu-t)OH, and o-MeC₆H₄NHBu-t. p-Nitroso-N,N-dimethylaniline forms the N,O-di-tert-butylated derivative in the absence of acid but in the presence of PTSA/KI yields p-Me₂NC₆H₄NHBu-t. Excellent yields of the N,O-di-tert-butylated arylhydroxylamines are formed in DMF from the nitroaromatics with para Me₂N, OH, I, Br, Cl, and ortho Ph or PhNH substituents. Nitrobenzenes with p-CHO, p-PhCO, or p-CN substituents are deoxygenated to the nitroso compounds which react with t-Bu[•] to form the tert-butoxyamino radicals (ArNOBu-t). In Me₂SO, the amino radicals react to form ArN(HgI)OBu-t compounds which condense with the nitroso compounds to yield the azoxy compounds. With the p-CN substituent, the azoxy compound is subsequently deoxygenated and tert-butylated to yield p $NCC_6H_4N(Bu-t)NHC_6H_4CN-p.$ In the presence of PTSA/KI, the amino radicals are reduced to p-Y-ArNHOBu-t (Y = PhCO, CN). The compounds Y-ArN(Bu-t)OBu-t undergo photochemical degradation to yield Y-ArNHBu-t with Y = p-PhCO or p-CN in a reaction that is inhibited by I⁻. With PTSA/H₂O/KI in Me₂SO, p-Me₂NC₆H₄N(t-Bu)OBu-t is converted into 4-(N-tert-butylimino)-2,5-cyclohexadien-1-one, p-Me₂NC₆H₄NHBu-t, and p-tert-butylamino-m-tert-butoxy-N,N-dimethylaniline. o-MeC₆H₄N(Bu-t)OH reacts with PTSA/KI to form o-MeC₆H₄N(Bu-t)H in DMF or a mixture of the aniline and 4-(N-tert-butylimino)-3-methyl-2,5-cyclohexadien-1-one in Me₂SO. In the absence of KI, only the cyclohexadienone is formed in Me₂SO.

INTRODUCTION

Photolysis of nitroaromatics (1) in the presence of t-BuHgI/KI in Me₂SO or DMF leads to deoxygenation products via electron transfer between ArNO₂^{*} and t-BuHgI₂⁻ or I⁻ to yield initially the nitroso compounds (2) (Scheme 1a) [2].

Deoxygenation will also occur in the dark in the presence of $K_2S_2O_8$, a reagent which readily generates *t*-Bu[•] by Scheme 1b [3]. Deoxygenation of ArNO₂ appears to involve the addition of *t*-Bu[•] to the nitro group followed by electron transfer with *t*-BuHgI₂ or I⁻. The deoxygenation reactions are not considered to involve coupling of *t*-Bu[•] with ArNO₂⁻, since nitro radical anions readily transfer an electron to the more easily reduced alkylmercury halide in a dissociative manner.[4]

Dedicated to Prof. Antonino Fava on the occasion of his seventieth birthday.

^{*}To whom correspondence should be addressed.

(a)
$$\operatorname{ArNO}_2^* + t \operatorname{-BuHgI}_2^- \longrightarrow \operatorname{ArNO}_2^{\bullet^-} + t \operatorname{-Bu}^{\bullet} + \operatorname{HgI}_2$$

 $\operatorname{ArNO}_2^{\bullet^-} + t \operatorname{-BuHgI} \longrightarrow \operatorname{ArNO}_2 + t \operatorname{-Bu}^{\bullet} + \operatorname{Hg}^{\bullet} + \Gamma$
 $\operatorname{ArNO}_2 + t \operatorname{-Bu}^{\bullet} \longrightarrow \operatorname{ArN}(O^{\bullet}) \operatorname{OBu}_{-} t$
 $\operatorname{ArN}(O^{\bullet}) \operatorname{OBu}_{-} t + t \operatorname{-BuHgI}_2^- \longrightarrow \operatorname{ArN}(O^{\bullet}) \operatorname{OBu}_{-} t + t \operatorname{-Bu}^{\bullet} + \operatorname{HgI}_2$
 $\operatorname{ArN}(O^{\bullet}) \operatorname{OBu}_{-} t \longrightarrow \operatorname{ArNO}_{+} t \operatorname{-BuO}_{-}^{\bullet}$

(b)
$$S_2O_8^{-2} + \Gamma \longrightarrow I^* + SO_4^{-2} + SO_4^{-1}$$

 $SO_4^{\bullet^*} + \Gamma \longrightarrow I^* + SO_4^{-2}$
 $I^* + t$ -BuHgI \longrightarrow HgI₂ + t-Bu^{*}

SCHEME 1

The products derived from the intermediate nitroso compounds depend upon the rate of t-Bu[•] generation, the substituents of the nitroso compound, and other reaction variables, such as the presence of bases or acids, e.g., DABCO or PTSA. The major products observed are 3-8.

(a) Y = H; (b) Y = o-Me; (c) Y = p-Me₂N; (d) Y = o-PhNH; (e) Y = p-CHO; (f) Y = p-PhCO; (g)

Y = p-CN; (h) p-OH; (i) Y = o-Ph; (j) Y = p-I; (k) Y = p-Br; (l) Y = p-Cl; (m) Y = p-t-Bu; and (n) Y = $p-NO_2$

The observed products reflect competitions in the reactions of the nitrosoaromatics with t-Bu[•] (Reaction 1) and in the further reactions of the nitroxyl and aminyl radicals thus formed, e.g., Reaction 2.

The competing processes of Reaction 2 and the routes to the completely deoxygenated amines 6 were further studied by the photolysis of the nitroso compounds 2a-c with t-BuHgI/KI.

RESULTS AND DISCUSSION

Reactions of Nitrobenzene

Nitrobenzene (1a) gave no significant reaction with excess t-BuHgI/KI in the absence of hv or of added $K_2S_2O_8$. Photolysis of mixtures of t-BuHgCl and 1a in the absence of added KI also failed to give significant reaction. Photolysis of nitrobenzene with t-BuHgI in the presence of KI yields mainly the ditert-butylated phenylhydroxylamine 3a which slowly undergoes homolytic aromatic substitution under forcing conditions to form the tri-tert-butylated derivative 3m (Table 1). The reactions are considerably faster in DMF than in Me₂SO, which we ascribe to more rapid electron transfer in Scheme 1a.

The photolysis of 1a with t-BuHgI/KI involves the slow deoxygenation to form 2a followed by conversion to 3a. The conversion of 2a to 3a involves the initial rapid formation of 4a which is converted to 3a slowly by Reaction 3. Because of the

$$4a \frac{t - Bu HgI (5 equiv)}{KI (5 equiv), hv, 8 h} 3a (65\%) + 4a (10\%) (3)$$

rate of the conversions, $1a \rightarrow 2a \rightarrow 4a \rightarrow 3a$, 4a is not usually observed as a reaction product even when unreacted 1a remains. However, in one experiment with DABCO as an additive (Table 1), a mixture of 3a (58%) and 4a (39%) was observed.

Reactions of Substituted Nitroaromatics

Table 2 summarizes the products observed upon photolysis of 1c-11 with an excess of t-BuHgI/KI.

t-BuHgl (equiv)	KI (equiv)	K ₂ S ₂ O ₈ (equiv)	Solvent	Time (Hours)	%3a	% 3m	% 1a
5	5	_	Me ₂ SO	12	36	5	55
5	5	_	Me ₂ SO	24	58	9	30
5	5		Me ₂ SO	48	72	21	
5	5	_	Me₂SO ^b	48	18	tr	80
5	5		Me ₂ SO ^c	25	58	tr	
5	5	5	Me₂SO ^b	24	35	tr	16
5	10	2	Me ₂ SO ^b	22	38	tr	30
5	10	5	Me₂SO ^b	22	50	16	
4	10		DMF	6	50	10	27
5	10	_	DMF	10	65	30	

TABLE 1 Reaction of PhNO₂ (1a) with t-BuHgI/KI at 35-40°C^a

^aReaction of 0.2 mmol of 1a in 2 mL of solvent. Reactions in the presence of K₂S₂O₈ were performed in the dark. In the absence of K₂S₂O₈, reactions were irradiated with a 275 W fluorescent sunlamp.

Dark reaction.

°In the presence of 5 equiv of DABCO. A 39% yield of 4a was also formed.

Substituent	Equivalents			T	Time	Timo		Products (%)				
	t-BuHgl	КІ	Other	Solvent	(Hours)	3	4	5	6	7	8	1
p-Me ₂ N (1c)	10	20		DMSO	20	67			12			_
D-Me ₂ N	10	20	$K_2S_2O_8(2)$	DMSO	20	56	—		11			
	5	5		Me ₂ SO	22-24	73 9 0	—		—			
o-PhNH	5	5		Me ₂ SO	30 ⁶	30		_				+
p-CHO (1e)	2	5	-	Me ₂ SO	48	4	—		-	56		tr
p-CHO	5	10		DMF	10	30	_	_				
p-PhCO (1f)	4	10		Me ₂ SO	48	23	—		tr	47	_	
p-PhCO	5	10	PTSA(5)	Me ₂ SO	13	31		41	-			
p-PhCO	5	10	DABCO(5)	Me ₂ SO	6	27	14	4	3	17	_	
p-PhCO	5	10		DMF	6	80	—	tr	tr	—		
p-PhCO	5	10	PTSA(5)	DMF	2	40	_	42	tr	_	_	
p-PhCO	5	10	PTSA(5)	DMF	6	30	—	47	13			—
p-CN (1g)	4	10		Me ₂ SO	24	36	_		15		38	—
p-CN	5	10	PTSA(5)	Me ₂ SO	5	13	_	30			tr	—
p-CN	5	10		DMF	6	68	—		tr	—	13	
p-CN	5	10	PTSA(5)	DMF	3	14		37	tr			
p-CN	5	10	PTSA(5)	DMF	8	15	_	36	tr			
p-CN	5°	10		DMF	31	48 [°]	-	_	_		_	
<i>p</i> -HO (1h)	5	10	DABCO(5)	DMSO	18	72	—	_	—		—	26
o-Ph	5	5	DABCO(2)	DMSO	24	90	_	_		_		
p-l (1j)	5	5		Me ₂ SO	30	16	28		6			10 ^ø
<i>p</i> -1	5	10	DABCO(5)	DMF	10	75	—	—	_			
<i>p</i> -Br (1k)	5	10	DABCO(5)	DMF	10	67	—	—				
p-CI (11)	5	10	DABCO(5)	DMF	6	52	—	~~~		—		

TABLE 2 Photochemical Reactions of Substituted Nitroaromatics with t-BuHoI/KI at $35-40^{\circ}C^{a}$

^aReaction of 0.2 mmol of 1 in 2 mL of solvent with irradiation from a 275 W fluorescent sunlamp.

Dark reaction.

p-Ci (11)

^ci-PrHgCl yielding p-NCC₆H₄N(i-Pr)OPr-i.

 $^{d}p-NO_{2}C_{6}H_{4}CMe_{3}$ (1m).

The dimeric products 7 or 8 became the predominant products in Me₂SO for 1e-1g in sharp contrast to the products observed from 1a or the other substituted nitroarenes studied. The amines 6 also became important products for several of the nitroaromatics. However, further experiments demonstrated that the amines are formed by secondary reactions of 3 and/or 4.

The azoxy compounds were formed in Me₂SO from 1e (p-CHO) and 1f (p-PhCO), while 1g (p-CN)yielded the hydrazine 8g undoubtedly by deoxygenation of the initially formed azoxy compound followed by tert-butylation of the azo compound. The azo compound was found to give a high yield of 8g upon photolysis in the presence of t-BuHgCl/ KI, while isolated 7e upon photolysis with t-BuHgI/

SCHEME 2

KI formed a mixture of the azo compound and the *tert*-butylated hydrazine (Reaction 4) [5].

$$7e \xrightarrow{t-BuHgI/KI} p-CHOC_6H_4N = NC_6H_4CHO-p + 8e 17\% 45\% (4)$$

The formation of 7 (or 8) from 1e-1g apparently reflects the competition between addition at nitrogen or oxygen in Reaction 1 with k_0 predominating with para CHO, PhCO, or CN substituents [6]. The resulting ArNOBu-t is most likely converted to ArN(HgI)OBu-t which would be expected to undergo rapid condensation with the nitroso compound (Scheme 2). In DMF, the formation of 7 or 8 is no longer important, presumably because of a more rapid generation of t-Bu[•]. The major products are now the di-tert-butylated derivatives 3 resulting from trapping of ArNOBu-t[•] by t-Bu[•].

The presence of PTSA in either Me₂SO or DMF had a dramatic effect on the reaction products of **1e–1g** greatly favoring the O-tert-butylphenylhydroxylamine 5 over 3 or 7. A reasonable interpretation is shown in Scheme 3, where protonation of the aminyl radical leads to a readily reduced amine radical cation. Protonolysis of ArN(HgI)OBu-t to yield 5 may also occur. With *i*-PrHgCl/KI in DMF, the reaction with 1g occurred much slower than with t-BuHgI/KI and yielded only the N,O-diisopropylphenylhydroxylamine. Since the electrontransfer reactions of RHgI₂ with ArNOR[•] are presumably dissociative processes which would occur more rapidly with R = t-Bu than with R = i-Pr, the absence of 5 and/or 7 seems reasonable. This result also suggests that the reduction of ArNOBu t^{\bullet} to ArNOBu- t^{-} probably involves t-BuHgI₂ rather than I^{-} , since otherwise, ArNHOR or ArN(O) = NAr would have been expected with R either *i*-Pr or *t*-Bu.

Aromatic homolytic substitution was detected for 1j (*p*-I) in Me₂SO, but it was a relatively minor process. With 1n (*p*-NO₂), the major products observed resulted from the homolytic displacement

$$\frac{\text{Me}_{2}\text{C}}{\text{ArNO} + t-\text{BuHgCl}} \xrightarrow{\text{Me}_{2}\text{C}} \frac{\text{Me}_{3}\text{C}}{\text{ArN}=0} + \frac{\text{Me}_{2}\text{C}}{\text{ArN}=0} + \frac{\text{Me}_{2}\text{C}}{\text{ArNO}} + \frac{\text{ArNO}}{\text{ArNO}} + \frac{\text{ArNO}$$

SCHEME 4

+

of NO₂ by *t*-Bu[•] (Reaction 5), a process not detected for 1e-1g [7].

$$\ln (p-NO_2) \xrightarrow{4 t-BuHgCl, 10 \text{ KI}} 1m (25\%) + 3m (20\%) + 6n (5\%)$$
(5)

Photostimulated Reactions of t-BuHgI/KI with the Nitrosoaromatics, **2a-2c**

In this section, evidence is presented that the conversion of 2 to 3 (and therefore of 1 to 3) proceeds mainly by the initial formation of 4. The conversion of 2 to 4 can be formulated as a chain process (Reactions 6 and 7), while the conversion of 4 to 3

$$ArNO + t - Bu^{\bullet} \rightarrow ArN(Bu - t)O^{\bullet}$$
(6)

 $ArN(Bu-t)O^{\bullet} + t-BuHgI_2^{-} \rightarrow ArN(Bu-t)O^{-}$

$$t-Bu^{\bullet} + HgI_2$$
[7]

(Reaction 3) would involve the consumption of two t-Bu[•] in a nonchain fashion. (Reaction 3 occurred only upon the photolysis of 4a and was more efficient in the absence of PTSA than in its presence.) The addition of PTSA to the reactions of 2a,b with t-BuHgI/KI increases the reaction rate and the probability that the intermediate nitroxide radical is converted to 4 (rather than trapped to form 3) via the chain sequence involving Reactions 6, 8, and 9. The presence of PTSA can

$$ArN(Bu-t)O^{\bullet} + PTSA \Longrightarrow ArN(Bu-t)OH$$
[8]

$$ArN(Bu-t)OH + t-BuHgI_{2}^{-} \rightarrow 4$$

$$+ t-Bu^{\bullet} + HgI_{2}$$
[9]

also introduce secondary ionic reaction, wherein **4a-c** (or **3c**) are converted to the amines **6a-c**.

The nitrosoaromatics 2a or 2b also react with *t*-BuHgCl/Me₂SO in the dark, or more readily upon sunlamp photolysis, to form the corresponding azoxy compounds in high yields [2]. However, upon irradiation with 5 equiv of *t*-BuHgI in the presence of KI, only traces of the azoxy compounds are formed and instead free radical processes leading to 3 and 4 dominate. Azoxybenzene formation with *t*-BuHgCl is accompanied by isobutene formation (from 'H NMR) and apparently proceeds by Scheme 4.

(a) Nitrosobenzene (2a). Table 3 presents yield

SCHEME 3

Equivalents					% Yield		
t-BuHgl	KI	Other	Solvent	Time (Hours)	За	4a	
5	10	_	Me₂SO-d ₆	1	40	37	
5	10		Me ₂ SO-d ₆	2	58	31	
5	10		Me ₂ SO-d ₆	4	68	25	
5	10	PTSA(5)	Me ₂ SO-d ₆	1	3	68	
5	10	PTSA(5)	Me ₂ SO-d ₆	2	4	70	
5	10	PTSA(5)	Me ₂ SO-d ₆	4	8	77	
5	10	DABCO(5)	Me ₂ SO-d ₆	1	44	25	
5	10	DABCO(5)	Me ₂ SO-d ₆	2	50	15	
5	10	DABCO(5)	Me ₂ SO-d ₆	4	50	tr	
5	10	K ₂ S ₂ O ₈ (2)	DMSO [⊅]	24	58	41	
5	10		DMF	3	52		
5	10	DABCO(5)	DMF	3	72	_	
5	10	PTSA(5)	DMF	3	16	23 ^c	

TABLE 3 Photostimulated Reactions of PhNO (2a) with t-BuHgl/Kl^a

*Reaction of 0.2 mmol of 2c in 2 mL of solvent irradiated by a 275 W fluorescent sunlamp.

Dark reaction.

°32% of 6a formed.

FIGURE 1 Ratio of **3a/4a** (by ¹H NMR) formed in the reactions of 1 M PhNO with 5 equiv of *t*-BuHgI and 10 equiv of KI in the absence (**●**) and presence of 5 equiv of DABCO (\bigcirc) or PTSA (**■**) in Me₂SO-*d*₆ solution (irradiation by a 275 W fluorescent sunlamp at 35–40°C). Because ¹H NMR line broadening from PhN(*t*-Bu)O[•] was observed in the initial stages of the reaction, only an approximate ratio of **3a/4a** of <0.3 and of 0.2--0.3 could be obtained for the 20 minute experiment in the absence of additives or the 30 minute experiment in the presence of DABCO.

data observed mainly in Me₂SO- d_6 by ¹H NMR and confirmed by isolation of the products **3a** and **4a**. The data yield the plot of Figure 1, which clearly shows that the initial reaction product is nearly

FIGURE 2 Ratio of **3a**/**4a** formed under the conditions of Figure 1 (\bullet) no additive, 0–4 hours; (\bigcirc) DABCO, 0–1 hours; and (\blacksquare) PTSA, 0–4 hours.

exclusively 4a from the competing processes of Reaction 2, the product 3a being stable under the reaction conditions. At the beginning of the reaction, the steady state concentration of t-Bu• will be low because of the facile addition of t-Bu• to PhNO. Meanwhile, the concentration of t-BuHgI₂ will be at a maximum. This leads to the nearly exclusive formation of 4a. Only after an appreciable fraction of the PhNO has been consumed is there an appreciable trapping of the nitroxide radical by t-Bu• to yield 3a. The additions of DABCO or PTSA have appreciable effects upon the rate of the reactions. Experiments performed in the absence and presence of these reagents are plotted in Figure 2 as a function of the degree of the reaction. In the presence of DABCO, somewhat higher ratios of 3a/4a are observed at lower conversions of 1a, but the overall yields of 3a and 4a decrease at high conversions from secondary reactions (Table 3). With PTSA in Me₂SO, both 3a and 4a are stable and nearly exclusive formation of 4a is observed. In the presence of PTSA, Reactions 8 and 9 occur so rapidly that there is little chance for the nitroxide radical (formed from either 1a or 4a) to be trapped by *t*-Bu[•].

Although both 3a and 4a are stable in Me₂SO solution to mixtures of PTSA and KI, in DMF, 4a but not 3a was reduced to the amine 6a (Reaction 10). No

$$4a \frac{\text{PTSA/KI}}{\text{DMF, Dark}} 6a (100\%) \tag{10}$$

reaction was observed for **4a** with PTSA in the absence of KI in DMF. Possibly in DMF in the presence of PTSA, I^- reacts with PhNH(Bu-*t*)OH⁺ or PhNH(Bu-*t*)I⁺ by nucleophilic displacement to form **6a**.

(b) o-Nitrosotoluene (2b). Reaction of 2b with t-BuHgCl/KI in Me₂SO again demonstrates that the ratio of 3b/4b increases with the reaction time (Table 4). During the initial stages of the reaction, the intermediate nitroxide radical could be detected by EPR, ¹H NMR line broadening, GCMS, or by isolation via column chromatography. With t-BuHgI/KI, more of 4b was formed, consistent with this reagent being a better reducing agent for the nitroxide radical.

In Me₂SO, 4b was not reduced to 6b by aqueous $Na_2S_2O_3$ workup. However, with aqueous $Na_2S_2O_4$ workup, 4b was converted to 6b. With PTSA/KI in Me₂SO or DMF, the 4b formed from 2b was also converted to 6b (Table 4). At long reaction times in Me₂SO, 4b was no longer detected and 6b was accompanied by 9. However, 9 was only observed in Me₂SO solution. Isolated 3b was stable to PTSA

in Me₂SO or DMF in the presence or absence of KI, while isolated **4b** reacted with PTSA/KI in either solvent to form **6b**. In the absence of KI, **4b** was

stable to PTSA in DMF but slowly yielded 9 with PTSA in Me_2SO (Reactions 11–13).

$$4b \frac{\text{PTSA/KI}}{\text{DMF, 2 h}} 6b (83\%)$$
(11)

$$4\mathbf{b} \frac{\text{PTSA/KI}}{\text{Me}_2\text{SO}, 14 \text{ h}} \mathbf{6b} (41\%) + \mathbf{9} (10\%) \quad (12)$$

$$4b \frac{\text{PTSA}}{\text{Me}_2\text{SO}, 42 \text{ h}} 9 (95\%)$$
(13)

N-Alkylphenylhydroxylamines, such as PhN-(Bu)OH, readily undergo acid-catalyzed rearrangements to form the *N*-alkyl-*p*-hydroxyanilines [8]. However, the *N*-tert-butylarylhydroxyamines **4a**,**b** were quite unreactive with mineral acids such as 2M H₂SO₄. The formation of **9** apparently involves the formation of the nitrenium ion from **4b** followed by attack of water at the para-position and acid-catalyzed oxidation of the resulting *p*-aminophenol by Me₂SO. (A similar reaction of **4a** to yield **10** was not observed.) Oxidations of 2°-alcohols by species such as Me₂SOX⁺ usually require a base to remove a proton [9]. In the present example, **4b** or **9** could serve as the base in this oxidative process.

(c) p-Nitroso-N,N-dimethylaniline(2c). Photolysis of 2c with t-BuHgI/KI in Me₂SO followed by treatment with aq Na₂S₂O₃ (to remove mecurials) yielded a mixture of 3c and 6c (Table 5). When the workup utilized only aq NaCl, 6c was not detected upon CH₂Cl₂ extraction and an insoluble tar accompanied 3c. Possibly, 6c is formed from the undetected 4c by reaction with aq Na₂S₂O₃. In the presence of PTSA, the photolysis of 2c with t-BuHgI/ KI gave an excellent yield of 6c, presumably via the reduction of 4c and/or 3c (aq Na₂S₂O₃ workup was not required to form 6c).

Compound 2c reacted slowly with t-BuHgI/ Me₂SO in the dark. After reaction for 1 week, workup with aq Na₂S₂O₃ yielded 14% of recovered 2c and 30% of $N_{.}N$ -dimethyl-*p*-phenylenediamine. Apparently, the reactions of Scheme 4 occur thermally to yield *p*-Me₂NC₆H₄NHOHgI which is reduced by Na₂S₂O₃ to the diamine upon workup. The azoxy or azo compounds were not formed in significant yields.

Further Reactions of N,O-di-tert-Butylphenylhydroxylamines

We have already described the conversion of the arylhydroxylamines 4a-c to the anilines 6a-c by PTSA/KI. When isolated 3c was reacted with 5 equiv each of t-BuHgI, KI, and PTSA in Me₂SO for 3 hours, compound 6c was cleanly formed in 85% yield in the dark and in 88% yield with sunlamp irradiation. However 3a, 3b, or 3i gave no signifi-

	Equivalent	S		Time	% Yield				
t-BuHgCl	КІ	Other	Solvent	(Hours)	3b	4b	6b	9	
5	10		Me ₂ SO-d ₆	1.5⁵	47	39			
5	10		Me ₂ SO-d ₆	3 ⁵	57	23			
5	10		Me ₂ SO-d ₆	6 [¢]	69	20			
5	10		Me ₂ SO-d ₆	1.5	51	27	tr		
5	10		Me ₂ SO-d ₆	2	64	19	7		
5	10		Me ₂ SO	2 ^c	74	_	14		
5	10	DABCO(5)	Me ₂ SO	2	60	7			
5 ^d	10	DABCO(5)	Me ₂ SO	2	53	20			
5	10	PTSA(5)	Me ₂ SO	2	25	22	8	tr	
5	10	PTSA(5)	Me ₂ SO	2 ^c	31		17	18	
5	10	PTSA(5)	Me ₂ SO	24	38	—	21	20	
5	10	$K_2S_2O_8(5)$	Me ₂ SO	2	70	15	tr		
5	10		DMF	2	64	_	6		
5	10	DABCO(5)	DMF	1	89	5	—	<u></u>	
5	10	PTSA(5)	DMF	2	30		16		

TABLE 4 Photostimulated Reactions of o-Nitrosotoluene (2b) with t-BuHgCl/KI at 35-40°C^a

*See Table 3. Workup with aq Na₂S₂O₃ followed by CH₂Cl₂ extraction.

^{b1}H NMR yield without workup.

Workup with aq Na₂S₂O₄.

^et-BuHgl.

TABLE 5 Photostimulated Reactions of p-Nitroso-N,N-dimethylaniline (2c) with t-BuHgI/KI at 35-40°C^a

Equivalents				Time	% Yield		
t-BuHgl	Igl KI Others Solvent	(Hours)	3c	6c			
5	5	<u> </u>	Me ₂ SO	4	71	28	
5	5	_	Me ₂ SO	4	67	0 ⁵	
5	5	DABCO(5)	Me ₂ SO	8	72	17	
5	10	PTSA(5)	Me ₂ SO	3		80	
5	10	K2S2O8(2)	Me ₂ SO ^c	3	80		
5	5		DMF	4	75		
5	5	PTSA(5)	DMF	3		45	
5	5	DABCO(5)	DMF	1	95	tr	

³See Table 3. Workup by aq Na₂S₂O₃ and CH₂Cl₂ extraction. ^bWorkup with aq NaCl.

Dark reaction.

cant reaction upon photolysis in the presence or absence of PTSA or PTSA/KI. In the dark, **3f** and **3g** were also stable, but upon photolysis in the presence or absence of PTSA, the anilines **6f** and **6g** were formed (Reaction 14). Compound **3c** was also photochemically degraded to **6c** in the absence of KI or PTSA.

$$p-Y-C_{6}H_{4}N(Bu-t)OBu-t \xrightarrow{h\nu, Me_{2}SO}_{40-48 h}$$

e, Y = Me_{2}N, 31%
6 f, Y = COPh, 47%
g, Y = CN, 83% (14)

The photochemical degradations of 3f and 3g are accompanied by the formation of 2,2-dimethyloxirane (from ¹H NMR). These photolyses are also retarded by I⁻, which explains the relatively low yields of **6f** or **6g** in Table 2. The photochemical degradations of **3f** or **3g** were cleaner in the presence of $K_2S_2O_8$, but we were unable to achieve degradation with $K_2S_2O_8$ in the dark or degradations of **3a** or **3b** upon photolysis with $K_2S_2O_8$. The reaction products from **3f** or **3g** are well explained by a photostimulated radical cation mechanism (Scheme 5).

A similar process can be formulated for 3c involving the easily formed *p*-phenylenediamine derivative, *p*-Me₂NC₆H₄N(Bu-*t*)OBu-*t*^{•+}.

It seems unusual that a radical cation could be formed with Y = CN or PhCO (Scheme 5) but not with Y = H, o-Me, or p-I. However, as shown in Scheme 5, possibly the radical cation is stabilized by resonance with the electron-withdrawing un-

saturated substituent Y. The formation of the oxirane in an S_{Hi} reaction of the distonic radical cation has some precedence, since it is known to occur in the thermolysis of di-*tert*-butyl peroxide (*t*-BuOOCMe₂CH^{*}₂ \rightarrow *t*-BuO[•] + dimethyloxirane) [10].

Compound 3c is unstable to PTSA/KI in Me₂SO and reacts in the dark to form a mixture of 10 and 6c (Reaction 15). The ratio of 10/6c in Reaction 15 varies with

$$3c \frac{PTSA/KI}{Me_2SO/H_2O} \mathbf{10} + \mathbf{6c}$$
(15)

the amount of H_2O present, and with Me_2SO (90%)-H₂O (10%), essentially only 10 is formed. Compound 10 is formed from 3c only in the presence of KI. This suggests that the N-iodo compound [p- $Me_2NC_6H_4N(Bu-t)I$ may be a precursor to 10 by nucleophilic attack of H_2O at the para position. Reaction of 3c with PTSA in the dark in Me₂SO or Me_2SO/H_2O failed to form 10 but yielded a mixture of 6c and 11 (Reaction 16). We interpret this to mean that the nitrenium ion [p-Me2NC6H4N(Bu- $(t)^+$ is not the precursor to 10. In the dark, 6c and 11 are formed in approximately a 4:1 ratio which is not significantly affected by the presence of water. (Traces of 11 are also formed in Reaction 15) [11]. Apparently, upon protonation, 3c can rearrange to 11. Possibly in the absence of KI, the radical chain process of Scheme 5 leading to 6c can also be initiated.

EXPERIMENTAL SECTION

General Procedure for the Photochemical Deoxygenation of Nitroso or Nitroarenes

The arene (0.2–1.0 mmol), t-BuHgI, or t-BuHgCl (1– 5 mmol) and KI (2-10 mmol) with or without added DABCO or PTSA were placed in a pyrex test tube and 2-10 mL of deoxygenated Me₂SO or DMF was added under nitrogen. With stirring, the solution was irradiated for 1-48 hours with a 275 W General Electric fluorescent sunlamp ca. 25 cm from the reaction tube. The reaction mixture was poured into 50 mL of saturated aq Na₂S₂O₃ solution, neutralized if required, and extracted with CH₂Cl₂. The extract was washed with saturated aq Na₂S₂O₃ (3 \times 50 mL) and saturated brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. Products were isolated by flash column chromatography using 230-240 mesh, grade 60 Merck silica gel (Aldrich Chemical Co.) with hexane (95%)ethyl acetate (5%) as the eluent.

Analytical gas chromatography was performed using a Varian 3700 gas chromatograph equipped with a Hewlett-Packard 3390A integrator using PhCH₃ and PhPh as internal standards and predetermined response factors. NMR spectra were recorded by a Nicolet NT 300 spectrometer with TMS as the internal standard (300 MHz for ¹H, 75.4 MHz for ¹³C). Yields were measured by ¹H NMR from integrations with a known amount of PhCH₃ as an internal standard. MS spectra were recorded in the GC mode (CI or EI) with a Finnegan 4000 spectrometer. HRMS spectra were recorded with a Kratos MS-50 spectrometer. Infrared spectra were obtained in the FT mode with an IBM IR 98 spectrometer. Melting points were determined with a Thomas-Hoover apparatus and are uncorrected.

Me₂SO was distilled from CaH₂ under vacuum. Me₂SO-d₆ (Cambridge Isotope Laboratories) was dried over 4A molecular series. Compounds 1 and 2 were purchased from Aldrich Chemical Co. and used without further purification. t-BuHgCl was prepared from t-BuLi and HgCl₂ in THF, mp (dec) 110–113°C (Ref. [12] 117–119°C, dec); ¹H NMR (CDCl₃) δ 1.51 (s). t-BuHgI was prepared from t-BuHgCl and 2 equiv of KI in Me₂SO and crystallized from CH₂Cl₂ after an aqueous workup. The material decomposed upon heating; ¹H NMR (CDCl₃) δ 1.43 (s).

N-tert-Butoxy-N-tert-butylaniline (**3a**). Compound **3a** was isolated as a liquid; ¹H NMR (CDCl₃) δ 7.26–7.16 (m, 3H), 7.08–7.01 (m, 2H), 1.07 (s, 9H), 1.05 (s, 9H); ¹³C NMR (CDCl₃) δ 151.1, 127.1, 126.0, 124.3, 78.0, 59.4, 28.2, 26.8; GC and HRMS, *m/z* (relative intensity) 221.1781 (M⁺, 1.0, calcd for C₁₄H₂₃NO 221.1780), 165(25), 148(6), 133(2), 118(9), 109(100), 91(7), 77(16), 57(81).

N-tert-Butylphenylhydroxylamine (4a) [13]. Com-

pound 4a was isolated as a solid, mp 113–114°C (Ref. [12] mp 115–117°C), FTIR at 3219 cm⁻¹ (Ref. [12] 3220 cm⁻¹); ¹H NMR (CDCl₃) δ 7.23 (d, J = 4.2 Hz, 4H), 7.20 (br · s, 1H), 7.10 (sextet, J = 4.2 Hz, 1H), 1.085 (s, 9H); ¹H NMR (Me₂SO-d₆) δ 8.25 (s, 1H), 7.21–7.16 (m, 4H), 7.04 (tt, J = 6.9, 1.5 Hz, 1H), 1.05 (s, 9H); ¹³C NMR (CDCl₃) δ 149.1, 127.4, 125.1, 124.6, 60.6, 25.9; GCMS, *m/z* (relative intensity) 165(100), 150(2), 133(4), 118(13), 109(100), 77(21), 57(69).

N-tert-Butylaniline (**6a**) [13]. Compound **6a** was isolated as liquid with FTIR (CDCl₃) at 3404 cm⁻¹; ¹H NMR (CDCl₃) δ 7.15 (t, J = 7.8 Hz, 2H), 6.77–6.728 (m, 3H), 3.089 (br \cdot s, 1H), 1.33 (s, 9H); ¹³C NMR (CDCl₃) δ 146.2, 128.3, 117.7, 116.9, 50.9, 29.5; GCMS, m/z (relative intensity) 149(34), 134(100), 118(7), 106(6), 93(75), 77(18), 57(13).

N-tert-Butoxy-*N*-tert-butyl-o-toluidine (**3b**). Compound **3b** was isolated as a liquid; ¹H NMR (CDCl₃) δ 7.56 (d, J = 7.8 Hz, 1H), 7.12–6.98 (m, 4H), 2.38 (s, 3H), 1.09 (s, 9H), 1.02 (s, 9H); ¹³C NMR (CDCl₃) δ 150.6, 134.5, 129.7, 127.2, 124.9, 124.6, 108.9, 60.7, 28.1, 26.2, 19.0; GC and HRMS, m/z (relative intensity) 235.12942 (M⁺, 0.7, calcd for C₁₅H₂₅NO 235.1936), 179(24), 164(6), 132(7), 123(100), 106(15), 91(7), 77(4), 57(38).

N-tert-Butyl-N-hydroxytoluidine (4b). Compound 4b was isolated as solid, mp 78–79°C; FTIR at 3229 cm⁻¹ (CDCl₃); ¹H NMR (CDCl₃) δ 7.53–7.03 (m, 4H), 5.56 (br · s, 1H), 2.29 (s, 3H), 1.15 (s, 9H); ¹³C NMR (CDCl₃) δ 147.9, 134.4, 129.7, 125.8, 125.3, 125.1, 61.0, 25.3, 18.6; GC and HRMS, *m/z* (relative intensity) 179.1311 (M⁺, 8, calcd for C₁₁H₁₇NO 179.1310), 123(100), 106(96), 91(4), 77(19), 57(28).

N-tert-Butyl-(2-methylphenyl)nitroxide [13,14]. The nitroxide was isolated as a liquid by silica gel chromatography. The resolution of the ¹H NMR spectrum was not very good, but in CDCl₃, the chemical shifts were observed to be almost the same as for **4b**; GCMS, m/z (relative intensity) 178 (M⁺, 4), 163(7), 148(15), 132(9), 122(37), 106(12), 91(16), 77(18), 57(100); EPR (CCl₄) $a^{N} = 13.5$ G (Ref. [14] 13.5).

N-tert-Butyl-o-toluidine (**6b**). Compound **6b** was isolated as a liquid with FTIR (CDCl₃) at 3441 cm⁻¹; ¹H NMR (CDCl₃) δ 7.10–7.04 (m, 1H), 6.90 (d, J = 7.2 Hz, 1H), 6.64 (t, J = 7.2 Hz, 1H), 2.12 (s, 3H), 1.39 (s, 9H); ¹³C NMR (CDCl₃) 144.9, 130.4, 126.5, 123.6, 117.0, 114.2, 51.2, 30.2, 18.1; GC and HRMS, *m/z* (relative intensity) 163.1360 (M⁺, 38, calcd for C₁₁H₁₇N 163.1361), 148(100), 132(6), 118(3), 107(68), 106(53), 91(10), 77(10), 57(10).

p-Dimethylamino-N-tert-butoxy-N-tert-butylaniline (3c). Compound 3c was isolated as a solid, mp 110–111°C; ¹H NMR (CDCl₃) δ 7.13 (br · s, 2H), 6.61 (d, J = 9.0 Hz, 2H), 2.91 (s, 6H), 1.051 (s, 9H), 1.046 (s, 9H); ¹³C NMR (CDCl₃) δ 147.8, 141.8, 126.7, 111.9, 77.4, 59.2, 40.9, 28.2, 26.8; GC and HRMS, m/z (relative intensity) 264.2196 (M⁺, 11, calcd for C₁₆H₂₈N₂O 264.2202), 248(0.1), 208(1.3), 166(100), 150(3), 136(19), 119(29), 105(16), 91(11), 77(24), 57(0.4).

p-Dimethylamino-N-tert-butylaniline (**6c**). Compound **6c** was isolated as a liquid with FTIR at 3327 cm⁻¹; ¹H NMR (CDCl₃) δ 6.79 (dd, J = 8.7, 2.1 Hz, 2H), 6.65 (dd, J = 9.0, 2.1 Hz, 2H), 2.86 (s, 6H), 1.19 (s, 9H); ¹³C NMR (CDCl₃) δ 146.2, 136.7, 123.8, 113.8, 52.3, 41.4, 30.1; GC and HRMS, m/z (relative intensity) 192.1627 (M⁺, 75, calcd for C₁₂H₂₀N₂ 192.1627), 177(62), 135(100), 121(38), 88(29), 57(6).

2-(*N*-tert-Butoxy-*N*-tert-butylamino)diphenylamine (**3d**). Compound **3d** was isolated as a liquid with FTIR at 3366 cm⁻¹; ¹H NMR (CDCl₃) δ 7.51–6.76 (m, 9H), 1.13 (s, 9H), 1.09 (s, 9H); ¹³C NMR (CDCl₃) δ 142.7, 139.5, 138.9, 129.3, 127.2, 125.8, 121.0, 118.7, 118.3, 113.8, 77.6, 60.5, 28.0, 26.1; GC and HRMS, *m/z* (relative intensity) 312.2205 (M⁺, 23, calcd for C₂₀H₂₈N₂O 312.2202), 256(40), 239(52), 199(47), 183(100).

2-(*N*-tert-Butylamino)diphenylamine (6d). Compound 6d was isolated as a liquid with FTIR at 3375 cm⁻¹; ¹H NMR (CDCl₃) δ 7.22–6.70 (m, 9H), 5.31 (s, 1H), 3.92 (s, 1H), 1.28 (s, 9H); ¹³C NMR (CDCl₃) δ 145.5, 141.5, 131.4, 129.1, 124.7, 124.1, 119.3, 118.4, 117.1, 115.5, 51.3, 29.9; GC and HRMS, m/z (relative intensity) 240.1628 (M⁺, 59, calcd for C₁₆H₂₀N₂ 240.1626), 225(27), 184(100), 183(63), 182(54), 169(33), 77(21), 57(25).

p-(*N*-tert-Butoxy-*N*-tert-butylamino)benzaldehyde (3e). Compound 3e was isolated as a solid, mp 40– 45°C; ¹H NMR (CDCl₃) δ 9.93 (s, 1H), 7.76 (dd, J =9.0, 1.5 Hz, 2H), 7.42 (br · s, 2H), 1.12 (s, 9H), 1.07 (s, 9H); GC and HRMS, m/z (relative intensity) 249.1729 (M⁺, 0.9, calcd for C₁₅H₂₃NO₂ 249.1729), 193(20), 137(100), 91(3), 77(5), 57(69).

4,4'-Azoxybenzaldehyde (7e). Compound 7e was isolated as a solid, mp 190–191°C; ¹H NMR (CDCl₃) δ 10.2 (s, 1H), 10.1 (s, 1H), 8.51 (d, J = 8.7 Hz, 2H), 8.28 (d, J = 8.7 Hz, 2H), 8.07 (dd, J = 8.7, 1.5 Hz, 2H), 8.02 (dd, J = 8.4, 1.5 Hz, 2H); GC and HRMS, m/z (relative intensity) 254.0686 (M⁺, 19, calcd for C₁₄H₁₀N₂O₃ 254.0691), 226(3), 169(3), 133(20), 119(5), 115(3), 105(100), 77(43).

4,4'-Azobenzaldehyde. This compound was isolated as a solid, mp 231-232°C; ¹H NMR (CDCl₃) δ 10.13 (s, 2H), 8.08 (td, J = 8.7, 2.4 Hz, 8H); HRMS, m/z (relative intensity) 238.0743 (M⁺, 46, calcd for C₁₄H₁₀N₂O₂ 238.0742), 207(2), 133(4), 105(100), 77(4).

N-tert-Butyl-4,4'-hydrazobenzaldehyde (8e). Compound 8e was isolated as a solid, mp 142–143°C; ¹H NMR (CDCl₃) δ 9.88 (s, 1H), 9.74 (s, 1H), 7.77 (d, J = 8.7, 2H), 7.71 (d, J = 8.7, 2H), 7.30 (d, J = 8.7, 2H), 6.91 (d, J = 8.7, 2H), 6.36 (br \cdot s, 1H), 1.38 (s, 9H), HRMS, m/z (relative intensity) 296.1523 (M⁺, 6, calcd C₁₈H₂₀N₂O₂ 296.1525), 240(100), 211(12), 182(3), 146(6), 133(2), 120(8), 105(13), 77(10), 57(15).

4,4'-Azoxybenzophenone (**7f**). Compound **7f** was isolated as a solid, mp 198.5–199.5°C; ¹H NMR (CDCl₃) δ 8.16 (dd, J = 9.0, 1.8 Hz, 2H), 8.26 (dd, J = 8.4, 1.8 Hz, 2H), 7.98–7.18 (m, 14H); ¹³C NMR (CDCl₃) δ 217.3, 217.0, 195.5, 195.2, 150.2, 146.5, 140.6, 138.0, 137.2, 136.7, 133.1, 132.6, 130.6, 130.0, 128.5, 128.4, 127.3, 122.5; GC and HRMS, m/z (relative intensity) 406, 1320 (M⁺, 65, calcd for C₂₆H₁₈N₂O₃ 406.1317), 390(6), 197(10), 181(46), 153(15), 105(100), 77(30).

p - (N - tert - Butoxy - N - tert - butylamino) benzophenone (**3f**). Compound**3f** $had ¹H NMR (CDCl₃) <math>\delta$ 7.81– 7.38 (m, 9H), 1.13 (s, 9H), 1.08 (s, 9H); ¹³C NMR (CDCl₃) δ 196.0, 138.1, 133.4, 131.9, 129.8, 129.7, 128.1, 125.3, 78.7, 60.1, 28.1, 26.9; GC and HRMS, m/z (relative intensity) 326.2113 (M + 1⁺, 2, calcd for C₂₁H₂₈NO₂ 326.2120), 325.2052 (C₂₁H₂₇NO₂⁺, 0.5), 269(15), 252(3), 238(2), 213(100), 182(1), 136(13), 105(24), 77(15), 57(64); GCMS (CI, ammonia) 343 (M + 18⁺, 19), 326 (M + 1⁺, 100), 254(22).

p-(*N*-tert-Butyl-*N*-hydroxyamino) benzophenone (4f). Compound 4f was isolated as a solid, mp 131– 132°C; FTIR (CDCl₃) at 3427, 1655 cm⁻¹; ¹H NMR (CDCl₃) δ 7.76–7.70 (m, 4H), 7.57 (t, J = 7.2, 1H), 7.46 (t J = 7.2, 2H), 7.32 (d, J = 8.4, 2H), 6.62 (br · s, 1H), 1.17 (s, 9H); ¹³C NMR (CDCl₃) δ 195.9, 153.5, 137.8, 133.8, 132.0, 129.8, 128.1, 123.7, 61.3, 26.0, HRMS, *m*/*z* (relative intensity) 269.1410 (M⁺, 5, calcd for C₁₇H₁₉NO₂ 269.1416), 253.1470 (M – 16⁺, 13, calcd for C₁₇H₁₉NO 253.1467), 278(40), 222(12), 213(100), 136(31), 120(30), 105(57), 77(30), 57(57). Anal. calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.83; H, 7.28; N, 5.15.

p-(*N*-tert-Butoxyamino)benzophenone (**5f**). Compound **5f** was isolated as a solid, mp 103.5–104.0°C; FTIR (CDCl₃) at 3277, 1645 cm⁻¹; ¹H NMR (CDCl₃) δ 7.80–7.73 (m, 2H), 7.54 (tt, *J* = 7.2, 1.5 Hz, 1H), 7.46 (tt, *J* = 7.2, 1.5, 2H), 6.96 (d, *J* = 8.7, 2H), 6.82 (br · s, 1H), 1.320 (s, 9H); ¹³C NMR (CDCl₃) δ 195.5, 153.9, 138.5, 132.0, 131.6, 130.0, 129.6, 128.1, 112.5, 79.8, 26.5; HRMS, *m*/*z* (relative intensity) 269.1413 (M⁺, 3, calcd for C₁₇H₁₉NO₂ 269.1416), 213(100), 196(8), 168(18), 136(49), 105(21), 77(25), 57(30). Anal. calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.37; H, 7.20; N, 5.07.

p-(N-tert-Butylamino)benzophenone (6f). Com-

pound **6f** was isolated as a solid, mp 195–197°C; FTIR (CDCl₃) at 3362, 1637 cm⁻¹; ¹H NMR (CDCl₃) δ 7.73–7.70 (m, 4H), 7.52 (tt, J = 7.2, 1.2 Hz, 1H), 7.44 (tt, J = 7.2, 1.2 Hz, 2H), 6.66 (d, J = 8.7, 2H), 1.43 (s, 9H); ¹³C NMR (CDCl₃) δ 195.0, 151.0, 139.1, 132.7, 131.1, 129.4, 128.0, 125.5, 113.4, 51.4, 29.7: GC and HRMS, m/z (relative intensity) 253.1463 (M⁺, 59, calcd for C₁₇H₁₉NO₂ 253.1467), 238(100), 197(24), 120(93), 105(51), 77(43), 57(17); GCMS (CI, ammonia), 507 (2M + 1⁺, 3), 271 (M + 18⁺, 0.1), 254 (M + 1⁺, 100).

N-tert-Butyl-4,4'-dicyanohydrazobenzene (8g). Compound 8g was isolated as a solid, mp 62– 65°C with FTIR at 3312, 2250, 2214 cm⁻¹; ¹H NMR (CDCl₃) δ 7.52 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.7Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7Hz, 2H), 6.68 (s, 1H), 1.32 (s, 9H); ¹³C NMR (CDCl₃) δ 152.0, 151.7, 133.6, 132.4, 132.2, 120.2, 119.0, 111.5, 106.0, 100.1, 60.6, 27.3; GC and HRMS, m/z (relative intensity) 290.1530 (M⁺, 13, calcd for C₁₈H₁₈N₄ 190.1532), 234(100), 207(2), 143(5), 117(8), 102(21), 57(60).

4,4'-Azoxybenzonitrile (7g). Traces of 7g were isolated from the reaction of 7g with *t*-BuHgI/KI in Me₂SO. The compound had mp 214–216°C; ¹H NMR (CDCl₃) δ 8.46 (dt, J = 9.0, 1.2 Hz, 2H), 8.23 (dt, J = 8.7, 1.2 Hz, 2H), 7.87 (dt, J = 8.7, 1.2 Hz, 2H), 7.79 (dt, J = 8.7, 1.2 Hz, 2H); HRMS, m/z (relative intensity) 248.0699 (M⁺, 18, calcd for C₁₄H₈N₄O 248.0698), 232(6), 220(7), 130(28), 116(22), 102(100).

p-(*N*-tert-Butoxy-*N*-tert-butylamino)benzonitrile (**3g**). Compound **3g** was isolated as a liquid with FTIR at 2226 cm⁻¹; ¹H NMR (CDCl₃) δ 7.52 (d, *J* = 8.7 Hz, 2H), 7.38 (br, 2H), 1.09 (s, 9H), 1.05 (s, 9H); ¹³C NMR (CDCl₃) δ 156.9, 131.4, 126.2, 119.2, 107.6, 79.0, 60.3, 28.0, 26.8; GC and HRMS, *m/z* (relative intensity) 246.1732 (M⁺, 0.3, calcd for C₁₅H₂₅N₂O 246.1732), 190(22), 173(10), 143(9), 134(77), 102(8), 75(2), 57(100); GCMS (CI, ammonia) 510 (2M + 18⁺, 2), 493 (2M + 1⁺, 0.4), 281 (M + 35⁺, 67), 264 (M + 18⁺, 100), 247(M + 1, 18).

p-(*N*-tert-Butoxyamino)benzonitrile (**5g**). Compound **5g** was isolated as a solid, mp 80–81°C; FTIR (CDCl₃) at 3281, 2220 cm⁻¹; ¹H NMR (CDCl₃) δ 7.51 (dd, *J* = 8.7, 1.5), 6.94 (dt, *J* = 8.7, 1.5), 6.78 (br · s, 1H), 1.30 (s, 9H); ¹³C NMR (CDCl₃) δ 153.6, 133.0, 119.7, 113.2, 102.7, 79.8, 26.3; GC and HRMS, *m*/*z* (relative intensity) 190.1106 (M⁺, 10, calcd for C₁₁H₁₄N₂O 190.1106), 174(2), 159(6), 134(100), 117(40), 90(6), 57(90); GCMS (CI, ammonia) 398 (2M + 18⁺, 4), 225 (M + 35⁺, 100), 208 (M + 18⁺, 86), 191 (M + 1⁺, 1.4); Anal. calcd for C₁₁H₁₄N₂O: C, 69.45; H, 7.42; N, 14.72. Found: C, 69.15; H, 7.47; N, 14.47.

p-(N-tert-Butylamino)benzonitrile (6g). Compound 6g was isolated as liquid with FTIR (CDCl₃)

at 3381, 2212 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (dt, J = 8.7, 1.8), 6.62 (dt, J = 8.7, 1.8), 4.20 (br · s, 1H), 1.40 (s, 9H); ¹³C NMR (CDCl₃) δ 150.2, 133.3, 120.5, 114.1, 98.0, 51.3, 29.5; GC and HRMS, m/z (relative intensity) 174.1158 (M⁺, 19, calcd for C₁₁H₁₄N₂ 174.1157), 159(63), 143(4), 131(2), 118(100), 102(8), 84(0.2), 57(51); GCMS (CI, ammonia) 366 (2M + 18⁺, 0.9), 349 (2M + 1⁺, 1.5), 209 (M + 35⁺, 38), 192 (M + 18⁺, 100), 175 (M + 1⁺, 79).

N-tert-Butoxy-N-tert-butyl-p-hydroxyaniline (**3h**). Compound **3h** was isolated as a solid, mp 111– 112°C; ¹H NMR (CDCl₃) δ 7.13 (br · s, 2H), 6.70 (d, J = 9.0 Hz, 2H), 4.86 (br · s, 1H), 1.05 (s, 9H), 1.04 (s, 9H); GC and HRMS, m/z (relative intensity) 237.1725 (M⁺, 3.4, calcd for C₁₄H₂₃N₂ 237.1729), 181(29), 125(100), 108(35), 57(35).

N-tert-Butoxy-N-tert-butyl-o-phenylaniline (3i). Compound 3i was isolated as a solid, mp 93–94°C; ¹H NMR (CDCl₃) δ 7.81 (dd, J = 8.1, 1.2 Hz, 1H), 7.70 (dd, J = 8.4, 1.2, 2H), 7.28–7.12 (m, 6H), 1.209 (s, 9H), 0.821 (s, 9H); ¹³C NMR (CDCl₃) δ 149.7, 142.6, 136.8, 130.7, 129.9, 127.6, 126.9, 126.6, 126.2, 125.0, 77.8, 62.0, 28.4, 26.4; GCMS, m/z (relative intensity) 297 (M⁺, 17), 281(45), 266(72), 250(12), 241(53), 210(60), 185(70), 167(29), 57(45); Anal. calcd for C₂₀H₂₇NO: C, 80.76; H, 9.15; N, 4.71. Found: C, 80.70; H, 9.21; N, 4.41.

p-Iodo-N-tert-butoxy-N-tert-butylaniline (3j). Compound 3j was isolated as a solid, mp 75–78°C; ¹H NMR (CDCl₃) δ 7.52 (d, J = 8.7 Hz, 2H), 7.02 (br · s, 2H), 1.06 (s, 9H), 1.04 (s, 9H); GC and HRMS, *m/z* (relative intensity) 347.0741 (M⁺, 0.6, calcd for C₁₄H₂₂INO 347.0746), 291(16), 235(17), 218(5), 127(0.1), 108(4), 91(2), 77(2), 76(7), 57(100).

N-tert-Butyl-p-iodophenylhydroxylamine (4j). Compound 4j was isolated as a solid, mp, 119–120°C with FTIR at 3381 cm⁻¹; ¹H NMR (CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 1.08 (s, 9H); GC and HRMS, m/z (relative intensity) 291.0114 (M⁺, 17, calcd for C₁₀H₁₄INO 291.0120), 275(49), 260(100), 235(95), 218(30), 127(8), 57(90); CI (ammonia), m/z (relative intensity) 309 (M + 18⁺, 27), 292 (M + 1⁺), 276(100), 166(14), 150(14).

p-Iodo-N-tert-butylaniline (6j). Compound 6j was isolated as a liquid with FTIR at 3410 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 6.50 (d, J = 8.7 Hz, 2H), 3.29 (br \cdot s, 1H), 1.32 (s, 9H); GC and HRMS, m/z (relative intensity) 275.0167 (M⁺, 54, calcd for C₁₀H₁₄IN 275.0171), 260(94), 244(3), 219(100), 148(4), 77(5), 57(49).

p-Bromo-N-tert-butoxy-N-tert-butylaniline (3k). Compound 3k was isolated as a solid, mp 38–39°C; ¹H NMR (CDCl₃) δ 7.3 (dd, J = 9.0, 1.2 Hz, 2H), 7.15 (br · s, 2H), 1.06 (s, 9H), 1.04 (s,9H); GC and HRMS, m/z (relative intensity) 299.0881 (M⁺, 0.6, calcd for C₁₄H₂₂BrNO 299.0885), 245(8), 243(10), 228(3), 226(2), 189(41), 187(39), 108(2), 91(2), 77(1), 57(100).

p-Chloro-N-tert-butoxy-N-tert-butylaniline (31). Compound 31 was isolated as a liquid; ¹H NMR (CDCl₃) δ 7.18 (m, 4H), 1.06 (s, 9H), 1.05 (s, 9H); GC and HRMS, m/z (relative intensity) 257(1), 255.1386 (M⁺, 3, calcd for C₁₄H₂₂ClNO 255.1390), 201(7), 199(18), 184(3), 182(5), 145(25), 143(86), 128(2), 126(5), 113(2), 111(5), 57(100).

N-tert-Butoxy-p,N-di-tert-butylaniline (3m). Compound 3m was isolated as a liquid; ¹H NMR (CDCl₃) δ 7.20–7.13 (m, 4H), 1.29 (s, 9H), 1.07 (s, 9H), 1.04 (s, 9H); GC and HRMS, m/z (relative intensity) 277.2401 (M⁺, 1.1, calcd for C₁₈H₃₁NO 277.2406), 221(22), 165(100), 150(71), 91(3), 77(2), 57(39).

p-Nitro-N-tert-butylaniline (**6n**). Compound **6n** was isolated as a liquid; ¹H NMR (CDCl₃) δ 8.04 (ddd, J = 9.0, 3.6, 1.5 Hz, 2H), 6.60 (ddd, J = 9.3, 3.3, 1.5 Hz, 2H), 4.57 (br \cdot s, 1H), 1.44 (s, 9H); GC and HRMS, m/z (relative intensity) 194.1055 (M⁺, 27, calcd for C₁₀H₁₄N₂O₂ 194.1055), 179(100), 138(38), 108(19), 92(17), 91(6), 77(4), 57(72).

Reaction of 3b with PTSA. The reaction of compound **3b** (0.2 mmol) and PTSA \cdot H₂O (0.2 mmol) in 1 mL of Me₂SO-d₆ was followed by ¹H NMR. After 42 hours, compound **3b** was no longer detected. Workup yielded **9** in 95% yield. Reaction of **3b** (0.2 mmol) with PTSA \cdot H₂O (0.4 mmol) and KI (0.7 mmol) in 1 mL of Me₂SO-d₆ for 14 hours gave upon workup 41% of **6b** and 10% of **9**. Reaction of **3b** (0.2 mmol) with PTSA \cdot H₂O (1.4 mmol) and KI (1.4 mmol) in 2 mL of DMF for 2 hours gave **6b** in 83% yield. There was no reaction observed between **3b** and PTSA in DMF in the absence of KI.

4-tert-Butylimino-3-methyl-2,5-cyclohexadien-1one (9). Compound 9 was isolated as a liquid with FTIR (CDCl₃) at 1653 cm⁻¹; ¹H NMR (CDCl₃) δ 7.3 (d, J = 11.1 Hz, 1H), 6.46–6.44 (m, 1H), 6.41 (dd, J = 11.2, 2.4 Hz, 1H), 2.1 (d, J = 1.2 Hz, 3H), 1.451 (s, 9H); ¹³C NMR (CDCl₃) δ 187.6(s), 155.6(s), 152.2(s), 130.8(d), 129.2(d), 128.4(d), 57.9(s), 32.0(q), 18.8(q). The compound slowly dimerized after isolation and before the HRMS was obtained, m/z (relative intensity) 354.2301 (2M⁺ calcd for C₂₂H₃₀N₂O₂ 354.2307). The GCMS of freshly isolated material was 177 (M⁺, 25), 162(68), 121(36), 93(7), 78(7), 57(100).

4-N-tert-Butylimino-2,5-cyclohexadien-1-one (10). Compound 3c (0.2 mmol), KI (1 mmol), and PTSA \cdot H₂O (1 mmol) were dissolved in 5 mL of Me₂SO and stirred for 12 hours. The solution was added to water and neutralized with aq NaOH. Extraction by CH₂Cl₂ followed by drying and solvent evaporation gave an oily mixture which by ¹H NMR with toluene as an internal standard contained 12% of 3c, 7% of 6c, 7% of 11, and 72% of 10. Compound 10 decomposed when chromatography was attempted with silica gel or alumina. The crude mixture had FTIR absorptions at 1657 and 1618 cm⁻¹, which are assigned to the C = O and C = N of 10. The GCMS of 10 gave m/z (relative intensity) 163 (M⁺, 7), 148(98), 133(12), 120(2), 107(14), 77(3), 57(100); ¹H NMR (CDCl₃) δ 7.39 (dd, J = 10.5, 2.7 Hz, 1H), 7.01 (dd, J = 10.2, 2.7 Hz, 1H), 6.54 (dd, J = 10.8, 2.4 Hz, 1H), 6.51 (dd, J =10.8, 2.4 Hz, 1H), 1.47 (s, 9H); ¹³C NMR (CDCl₃) 187.2(s), 156.1(s), 145.7(d), 131.8(d), 131.1(d), 128.1(d), 58.5(s), 32.0(q).

m-tert-Butoxy-p-(tert-butylamino)-N,N-dimethylaniline (11). Reaction of **3c** with excess PTSA · H₂O in Me₂SO for 3 hours formed 53% of **6c** and 13% of 11. Compound 11 was isolated as a yellow liquid; ¹H NMR (CDCl₃) δ 6.90 (d, J = 8.7, 1H), 6.53 (d, J = 2.7, 1H), 6.43 (dd, J = 8.7, 2.7 Hz, 1H), 3.77 (br · s, 1H), 2.83 (s, 6H), 1.39 (s, 9H), 1.25 (s, 9H); ¹³C NMR (CDCl₃) δ 146.8(s), 144.6(s), 132.6(s), 119.6(d), 109.3(d), 108.8(d), 79.4(s), 52.1(s), 41.8(q), 30.2(q), 29.2(q); HMRS, m/z (relative intensity) 264.2211 (M⁺, 46, calcd for C₁₆H₂₈N₂O 264.2196), 208(100), 193(56), 177(15), 137(25), 123(99), 57(10). Anal. calcd for C₁₆H₂₈N₂O: C, 72.68; H, 10.67; N, 10.60. Found: C, 72.69; H, 10.63; N, 10.35.

Photodegradation of 3. Compounds 3f and 3g were photolyzed in Me₂SO- d_6 by a 275 W sunlamp. The only aromatic products observed were 6f (47% in 40 hours) and 6g (83% in 42 hours). Also observed were two ¹H NMR signals at δ 2.066 and 1.095 in the ratio of 1:3. These two peaks are believed to belong to 1.1-dimethyloxirane. The yield of 6f increased to 60% upon photolysis for 40 hours in the presence of 30 mol% of K₂S₂O₈.

Photolysis of 3c and 3d in Me₂SO in the presence of K₂S₂O₈ for 14 hours produced the amines **6c** and **6d** in yields of 31 and 50%, respectively.

Thermal Reaction of 2c with t-BuHgI. Reaction of 0.2 mmol of 2c and 1.0 mmol of t-BuHgI in 2 mL of Me₂SO for 1 week gave by ¹H NMR analysis 14% of unreacted 2c and 30% of N,N-dimethyl-pphenylenediamine. Column chromatography with basic alumina using hexane (90%)-ethyl acetate (10%) as eluent gave the pure diamine whose IR and ¹H NMR spectra were identical with material obtained from Aldrich Chemical Company.

ACKNOWLEDGMENT

Work was supported by Grant No. CHE-8717871 from the National Science Foundation and by the

donors of the Petroleum Research Fund, administered by the American Chemical Society.

REFERENCES

- [1] Electron Transfer Processes. Part 55.
- [2] G. A. Russell, C.-F. Yao, Heteroatom Chem., 3, 1992, 204.
- [3] G. A. Russell, D. Guo, W. Baik, S. J. Herron, *Heterocycles*, 28, 1989, 143.
- [4] G. A. Russell, J. Hershberger, K. Owens, J. Am. Chem. Soc., 101, 1979, 1312.
- [5] The isolated azoxy compound 7f was also destroyed by further photolysis with t-BuHgI/KI in Me₂SO. However, in this case, the azo or hydrazo compounds were not formed in significant yields. Among the products observed was the *N-tert*-butylarylhydroxylamine 4f. The 4f reported in Table 2 in only one experiment may well have been formed by further reaction of the initially formed 7f. The addition of t-Bu[•] to 2f may occur only at oxygen. Alternately, if all the 3f observed (Table 2) comes from p-PhCOC₆H₄N(Bu-t)O[•] (and none from p-PhCOC₆H₄NOBu-t[•]), the value of k_0/k_N for 2f may be as low as one.
- [6] A number of β -nitrostyrene derivatives react with t-BuHgI/KI/hv to yield products derived from PhC(R¹)=C(R²)N(HgI)OBu-t [2] (with R¹=Ph the major product observed on the 2,2-diphenyl-3-R²-2H-azirines or the 3-phenyl-2-R²-indoles). Apparently, nitrosoalkenes also are attacked by t-Bu[•] to yield mainly the resonance-stabilized amino radical, PhC(R¹)=C(R²)NOBu-t.
- [7] The 1-adamantyl radical attacks 1e-1g as well as In to displace a nitro group; L. Testaferri, M. Tiecco, M. Tingoli, M. Fiorentino, L. Troisi, J. Chem. Soc., Chem. Commun., 1978, 93. The absence of denitration with t-Bu[•] for 1e-1g is rather surprising but may be a result of the rapid formation of 2 in Scheme 1a followed by the efficient trapping of t-Bu[•] by 2 and/or ArNOBu-t.
- [8] G. E. Utzinger, F. A. Regenass, Helv. Chim. Acta, 37, 1954, 1885.
- [9] M. Hudlicky: Oxidations in Organic Chemistry, American Chemical Society, Washington, D.C. Monograph Ser., vol. 186, p. 43 (1990).
- [10] R. E. Bell, F. F. Rust, W. E. Vaughan, J. Am. Chem. Soc., 72, 1950, 337.
- [11] Since neither 3c, 10 or 11 is observed in the reaction of 2c with t-BuHgI/KI/PTSA in Me₂SO or DMF, it appears that the 6c observed (Table 5) is formed by the rapid reduction of undetected 4c.
- [12] M. M. Kreevoy, R. L. Hansen, J. Am. Chem. Soc., 83, 1961, 626.
- [13] A. K. Hoffmann, A. M. Feldman, E. Gelblum, J. Am. Chem. Soc., 86, 1964, 626.
- [14] A. Calder, A. R. Forrester, J. Chem. Soc., Chem. Commun., 1967, 682.